Аккамуляторы - просто о сложном
  • Как действует на ноги ортопедические кроссовки. просто так интересно

  • Еще немного о жизни….

  • Украшения и поделки своими руками


  • Аккумуляторы - просто о сложном.

    свинцово-кислотные аккумуляторы (SLA)
    никель-кадмиевые аккумуляторы (NiCd)
    никель-метал-гидридные аккумуляторы (NiMh)
    литий-ионные аккумуляторы (Li-Ion)
    литий-полимерные аккумуляторы (Li-Pol)

    В настоящее время для питания портативых устройств и оборудования наиболее широко применяются аккумуляторы пяти различных электрохимических систем:

    Sealed Lead Acid battery – герметичные свинцово–кислотные аккумуляторы. Свинцово–кислотный аккумулятор, изобретеный французским врачом Gaston Planteuere в 1859, был первым заряжаемым аккумулятором, предназначенным для коммерческого использования. Сегодня заливаемые свинцово–кислотные аккумуляторы используются в автомобилях и оборудовании, требующих отдачи большой мощности. В более портативном приборах используются герметичные аккумуляторы или аккумуляторы с регулирующим клапаном давления, некоторые из которых продаются под торговой маркой "gelcell".

    В отличие от обычного (негерметичного) свинцово–кислотного аккумулятора, SLA аккумулятор разработан с низким потенциалом перезаряда для предохранения аккумулятора от достижения потенциала, при котором во время заряда происходит выделение газа и начинается водное истощение. Поэтому SLA аккумулятор имеет длительный срок хранения, но никогда не заряжается до своего полного потенциала. Среди заряжаемых аккумуляторов, SLA имеет самую низкую плотность энергии.

    SLA аккумуляторы обычно используются в случаях, когда требуется большая мощность, вес не критичен, а стоимость должна быть низкой. Диапазон значений емкости для портативных приборов лежит в пределах от 1 до 30 A*час, а область применения инвалидные кресла, блоки бесперебойного питания и резервное освещение. SLA аккумуляторами также комплектуются некоторые переносные сотовые телефоны и видеокамеры. Из–за низкого саморазряда и минимальных требований по обслуживанию, SLA аккумуляторы – наиболее предпочтительный выбор для медицинских инструментов. Большие SLA аккумуляторы для стационарных применений имеют емкость от 50 до 200 A*час.

    SLA аккумуляторы не подвержены эффекту памяти. Без всякого вреда допускается оставлять аккумулятор в зарядном устройстве на плавающем заряде в течение длительного времени. Сохранение заряда – лучшее среди заряжаемых аккумуляторов. Принимая во внимание, что NiCd аккумуляторы саморазряжаются за три месяца на 40% от запасенной энергии, SLA аккумуляторы саморазряжаются на то же самое количество за один год. Эти аккумуляторы недороги, но стоимость их эксплуатации может быть выше, чем у NiCD, если в течение срока эксплуатации требуется большое количество циклов разряда/заряда.

    Для SLA аккумуляторов не приемлем режим быстрого заряда. Типовое время заряда – от 8 до 16 часов. SLA аккумулятор должен всегда храниться в заряженном состоянии. Хранение его в разряженном состоянии вызывает сульфатацию, которая делает их заряд трудным, если не невозможным.

    В отличие от NiCD, SLA аккумуляторы не любят глубокие циклы разряда. Глубокий разряд вызывает дополнительное напряжение, подобное напряжению механического устройства. Фактически, каждый цикл разряда/заряда отнимает у аккумулятора небольшое количество емкости. Эта потеря очень небольшая, если аккумулятор находится в хорошем состоянии, но становится более ощутима, как только емкость понижается ниже 80% от номинальной. Это справедливо и для аккумуляторов других электрохимических систем, но в различной степени. Чтобы ослабить влияние глубокого разряда, можно использовать SLA аккумулятор немного большего размера.

    В зависимости от глубины разряда и температуры эксплуатации, SLA аккумулятор обеспечивает от 200 до 500 циклов разряда/заряда. Основная причина относительно небольшого количества циклов разряда/заряда – расширение положительных пластин, которое является результатом химической реакции внутри аккумулятора. Это явление наиболее сильно проявляется при более высоких температурах. Применение циклов заряда/разряда не устраняет этот процесс. Однако, имеются методы улучшения состояние SLA аккумуляторов.

    SLA аккумуляторы обладают относительно низкой плотностью энергии по сравнению с другими аккумуляторами, и вследствие этого непригодны для компактных устройств. Это становится особенно критичным при низких температурах, так как способность отдавать большой ток в нагрузку при низких температурах значительно уменьшеньшается. Как это ни парадоксально, SLA аккумулятор весьма хорошо заряжается с чередующимися импульсами разряда. В течение этих импульсов, ток разряда может достигать значения более, чем 1C.

    Nickel-Cadmium battery – никель–кадмиевые аккумуляторы. Технология изготовления щелочных никелевых аккумуляторов была предложена в 1899, когда Waldmar Jungner изобрел первый никель–кадмиевый аккумулятор (NiCD). Используемые в них материалы были в то время дороги и их применение было ограничено специальной техникой. В 1932 внутрь пористого пластинчатого никелевого электрода были введены активные материалы, а с 1947 начались исследования герметичных NiCD аккумуляторов, в которых внутренние газы, выделяющиеся во время заряда, рекомбинировали внутри, а не выпускались наружу как в предыдущих вариантах. Эти усовершенствования привели к современному герметичному NiCD аккумулятору, который и используется сегодня.

    В настоящий момент NiCD аккумуляторы по прежнему остаются наиболее популярными для электропитания переносных радиостанций, медицинского оборудования, профессиональных видеокамер, регистрирующих устройств и мощных инструментов. Так свыше 50% всех аккумуляторов для переносного оборудования – NiCD. Появление более новых по электрохимической системе аккумуляторов хотя и привело к уменьшению использования NiCD аккумуляторов, однако, выявление недостатков новых видов аккумуляторов привело к возобновлению интереса к NiCD аккумуляторам.

    NiCD аккумулятор подобен сильному и молчаливому работнику, который интенсивно трудится и при этом не доставляет больших хлопот. Для него предпочтителен быстрый заряд по сравнению с медленным и импульсный заряд по сравнению с зарядом постоянным током. Улучшение эффективности достигается распределением импульсов разряда между импульсами заряда. Этот метод заряда, обычно называемый реверсивным, поддерживает высокую площадь активной поверхности электродов, тем самым, увеличивая эффективность и срок эксплуатации аккумулятора. Реверсивный заряд также улучшает быстрый заряд, т.к. помогает рекомбинации газов, выделяющихся во время заряда. В результате – аккумулятор меньше нагревается и более эффективно заряжается по сравнению со стандартным методом заряда постоянным током.

    Другая важная проблема, которая решается при использовании реверсивного заряда, это уменьшение кристаллических образований в элементах аккумулятора, что повышает эффективность и продлевает срок его эксплуатации. Исследования, проведенные в Германии показали, что реверсивный заряд добавляет около 15% к сроку службы NiCD аккумулятора.

    Для NiCD аккумуляторов вредно нахождение в зарядном устройстве в течение нескольких дней. Фактически, NiCD аккумуляторы – это единственный тип аккумуляторов, который выполняет свои функции лучше всего, если периодически подвергается полному разряду. Все остальные разновидности аккумуляторов по электрохимической системе предпочитают неглубокий разряд. Итак, для NiCD аккумуляторы важен периодический полный разряд, и если он не производится, NiCD аккумуляторы постепенно теряют эффективность из–за формирования больших кристаллов на пластинах элемента, явления, называемого эффектом памяти.

    Среди недостатков NiCD аккумулятора – необходимость периодической полной разрядки для сохранения эксплуатационных свойств (устранения эффекта памяти), высокий саморазряд (до 10% в течение первых 24 часов) и большие габариты по сравнению с аккумуляторами других типов. Кроме того, аккумулятор содержит кадмий и требует специальной утилизации. В ряде скандинавских стран по этой причине уже запрещен к использованию. Из–за больших габаритов и проблем с утилизацией NiCD аккумулятор постепенно покидает рынок сотовых телефонов.

    Nickel-Metal-Hydride battery – никель–металл гидридные аккумуляторы. Исследования в области технологии изготовления NiMH аккумуляторов начались в семидесятые годы и были предприняты как попытка преодоления недостатков никель–кадмиевых аккумуляторов. Однако применяемые в то время металл–гидридные соединения были нестабильны и требуемые характеристики не были достигнуты. В результате разработка NiMH аккумуляторов замедлилась. Новые металл–гидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980. Начиная с конца восьмидесятых годов, NiMH аккумуляторы постоянно улучшались, главным образом по плотности запасаемой энергии. Их разработчики отмечали, что для NiMH технологии имеется потенциальная возможность достижения еще более высоких плотностей энергии.

    Число циклов заряда/разряда для NiMH аккумуляторов примерно равно 500. Предпочтителен скорее поверхностный, чем глубокий разряд. Долговечность аккумуляторов непосредственно связана с глубиной разряда.

    NiMH аккумулятор по сравнению с NiCd выделяет значительно большее количество тепла во время заряда и требует более сложного алгоритма для обнаружения момента полного заряда, если не используется контроль по температуре. Большинство NiMH аккумуляторов оборудовано внутренним температурным датчиком для получения дополнительного критерия обнаружения полного заряда. Кроме того, NiMH аккумулятор не может заряжаться так быстро – время заряда обычно вдвое больше, чем у NiCD. Плавающий заряд должен быть более контролируемым, чем для NiCd аккумуляторов.

    Рекомендуемый ток разряда для NiMH аккумуляторов значительно меньше, чем для NiCD. Так изготовители рекомендуют ток нагрузки от 0.2C до 0.5C (от одной пятой до половины номинальной емкости). Этот недостаток не критичен, если требуемый ток нагрузки низок. Для применений, требующих высокого тока нагрузки или имеющих импульсную нагрузку, типа переносных радиостанций и мощных инструментов, рекомендуются NiCD аккумуляторы.

    И для NiMH и для NiCD аккумуляторов характерен приемлемо высокий саморазряд. NiCD аккумулятор теряет около 10% своей емкости в течение первых 24 часов, после чего саморазряд укладывается примерно в 10% в месяц. Саморазряд NiMH аккумуляторов – в 1.5–2 раза выше чем у NiCD. Применение гидридных материалов, улучшающих связывание водорода для уменьшения саморазряда, обычно приводит к уменьшению емкости аккумулятора.

    Емкость NiMH аккумуляторов примерно на 30% больше емкости стандартного NiCD аккумулятора того же размера. NiCD элементы очень высокой емкости обеспечивают уровень емкости, близкий к емкости NiMH.

    Цена NiMH аккумуляторов приблизительно на 30% выше, чем NiCD. Однако цена не главная проблема, если пользователю требуется большая емкость и небольшие габариты. Для сравнения, NiCD элементы очень высокой емкости только немного выше по цене стандартных NiCD элементов. По отношению емкость/стоимость NiCD аккумуляторы очень высокой емкости – более экономичны чем NiMH.

    Lithium-Ion battery – литий–ионные аккумуляторы. Литий является самым легким металлом, в то же время он обладает и сильно отрицательным электрохимическим потенциалом. Благодаря этому литий характеризуется наибольшей теоретической удельной электрической энергией. Вторичные источники тока на основе лития обладают высоким разрядным напряжением и значительной емкостью.

    Первые работы по литиевым аккумуляторам были осуществлены Г.Н. Льюисом (G.N. Lewis) в 1912 году. Однако, только в 1970 году появились первые коммерческие экземпляры первичных литиевых источников тока. Попытки разработать перезаряжаемые литиевые источники тока предпринимались еще в 80е годы, но были неудачными из–за невозможности обеспечения приемлемого уровня безопасности при обращении с ними.

    В результате исследований, проведенных в 80х годах, было установлено, что в ходе циклирования источника тока с металлическим литиевым электродом, на поверхности лития формируются дендриты. Прорастание дендрита до положительного электрода и возникновение короткого замыкания внутри литиевого источника тока является причиной выхода элемента из строя. При этом температура внутри аккумулятора может достигать температуры плавления лития. В результате бурного химического взаимодействия лития с электролитом происходит взрыв. Так, большое количество литиевых аккумуляторов поставленных в Японию в 1991г., было возвращено производителям после того, как в результате взрывов элементов питания сотовых телефонов от ожогов пострадали несколько человек.

    В попытке создать безопасный источник тока на основе лития, исследования привели к замене неустойчивого при циклировании металлического лития в аккумуляторе на соединения внедрения лития в угле и оксидах переходных металлов. Наиболее популярными материалами для создания литий–ионноых аккумуляторов в настоящее время являются графит и литийкобальтоксид (LiCoO2). В таком источнике тока в ходе заряда–разряда ионы лития переходят из одного электрода внедрения в другой и наоборот. Хотя эти электродные материалы обладает в несколько раз меньшей по сравнению с литием удельной электрической энергией, при этом аккумуляторы на их основе являются достаточно безопасными при условии соблюдения некоторых мер предосторожности в ходе заряда–разряда. В 1991, фирма Sony начала коммерческое производство литий–ионных аккумуляторов и в настоящее время является их самым крупным поставщиком.

    Удельные характеристики литий–ионных аккумуляторов по крайней мере вдвое превышают аналогичные показатели никель–кадмиевых аккумуляторов и хорошо характеризуют себя при работе на больших токах, что необходимо, например, при использовании данных аккумуляторов в сотовых телефонах и портативных компьютерах. Литий–ионные аккумуляторы имеют достаточно низкий саморазряд (2–5% в месяц).

    Для обеспечения безопасности и долговечности, каждый пакет аккумуляторов должен быть оборудован электрической схемой управления, чтобы ограничить пиковое напряжение каждого элемента во время заряда и предотвратить понижение напряжения элемента при разряде ниже допустимого уровня. Кроме того, должен быть ограничен максимальный ток заряда и разряда и должна контролироваться температура элемента. При соблюдении этих предосторожностей, возможность образования металлического лития на поверхности элетродов в ходе эксплуатации (что наиболее часто приводит к нежелательным последствиям), практически устранена.

    По материалу отрицательного электрода литий–ионные аккумуляторы можно разделить на два основных типа: с отрицательным электродом на основе кокса (фирма Sony) и на основе графита (большинство других изготовителей). Источники тока с отрицательным электродом на основе графита имеют более плавную разрядную кривую с резким падением напряжения в конце разряда, по сравнению с более пологой разрядной кривой аккумулятора с коксовым электродом. Поэтому, в целях получения максимально возможной емкости, конечное напряжение разряда аккумуляторов с коксовым отрицательным электродом обычно устанавливают ниже (до 2.5V), по сравнению с аккумуляторами с графитовым электродом (до 3V). Кроме того, аккумуляторы с графитовым отрицательным электродом способны обеспечить более высокий ток нагрузки и меньший нагрев во время заряда и разряда, чем аккумуляторы с коксовым отрицательным электродом.

    Производители непрерывно совершенствуют технологию литий–ионных аккумуляторов. Идет постоянный поиск и совершенствование материалов электродов и состава электролита. Параллельно предпринимаются усилия для повышения безопасности литий ионных аккумуляторов как на уровне отдельных источников тока, так и на уровне управляющих электрических схем.

    Литий–ионные аккумуляторы являются наиболее дорогими из доступных сегодня на рынке. Совершенствование технологии производства и замена оксида кобальта на менее дорогой материалом может приведет к уменьшению их стоимость на 50% в течение ближайших нескольких лет.

    Продолжается развитие других литий–ионных технологий, о чем говорят опубликованные результаты исследований. Так, согласно данным Fujifilm, разработанный этой фирмой аморфный композиционный окисный материал на основе олова для отрицательного электрода способен обеспечить в 1,5 раза более высокую электрическую емкость по сравнению с аккумуляторами со стандартным углеродным электродом. Дополнительные возможные преимущества аккумуляторов с этим материалом заключаются в большей безопасности, более быстром заряде, хороших разрядных характеристиках и высокой эффективности при низкой температуре. Недостатки на ранних этапах исследований обычно не упоминаются.

    Литий–ионные аккумуляторы обладают очень высокой удельной энергией. Соблюдайте осторожность при обращении и тестировании. Не допускайте короткого замыкания аккумулятора, перезаряда, разрушения, разборки, протыкания металлическими предметами, подключения в обратной полярности, не подвергайте их воздействию высоких температур. Это может нанести Вам физический ущерб.

    Lithium-Polimer battery – литий–полимерные аккумуляторы. Это последняя новинка в литиевой технологии. Имея примерно такую же плотность энергии, что и Li–ion аккумуляторы, литий–полимерные допускают изготовление в различных пластичных геометрических формах, нетрадиционных для обычных аккумуляторов, в том числе достаточно тонких по толщине, и способных заполнять любое свободное место.

    Li–pol аккумулятор, называемый также "пластиковым", конструктивно подобен Li–ion, но имеет гелевый электролит. В результате становится возможной упрощение конструкции элемента, поскольку любая утечка гелеобразного электролита – невозможна. На данный момент пока отсутствуют сведения по сроку эксплуатации и старения новых литий–полимерных аккумуляторов.

     

  • Как действует на ноги ортопедические кроссовки. просто так интересно

  • Еще немного о жизни….

  • Украшения и поделки своими руками



  • Последние новости


    Спор в корпоративном праве. Часть 7

    7. Обеспечение эффективности в реализации норм права. Общепризнано, что управомочивающие нормы, установленные государством, реализуются людьми более охотно, чем обязывающие и запрещающие. Это связано с тем, что степень волевого начала в данном случае выше. Нормы же корпоративного права, особенно это положение касается норм, регулирующих внутреннюю жизнь корпораций, в большей мере, нежели «централизованные», выражают волю коллектива. Люди выполняют собственные решения и действуют тем энергичнее, чем шире у них возможность пр...
    Читать далее »

    Лицензионный режим предпринимательской деятельности

    Регулирование бизнеса со стороны государства в значительной степени обеспечивается наличием лицензионного режима предпринимательской деятельности, который, по сути, представляет собой совокупность методов и способов правового регулирования определенных (подлежащих лицензированию) видов деятельности. Лицензирование осуществляется в порядке, предусмотренном Федеральным законом от 8 августа 2001 г. № 128 ФЗ «О лицензировании отдельных видов деятельности», а также иными нормативными актами. Так, например, лицензирован...
    Читать далее »

    Понятие ценной бумаги. Часть 5

    Осуществление прав по предъявительским эмиссионным ценным бумагам производится по предъявлении их владельцем либо его доверенным лицом. В случае хранения сертификатов документарных эмиссионных ценных бумаг в депозитариях права, закрепленные ценными бумагами, осуществляются на основании предъявленных этими депозитариями сертификатов по поручению, предоставляемому депозитарными договорами владельцев, с приложением списка этих владельцев. Эмитент в этом случае обеспечивает реализацию прав по предъявительским ценным бумагам лица, указанного ...
    Читать далее »

    Понятие и признаки корпорации. Часть 6

    И, наконец, Пятый признак, отличающий корпорации от других образований, заключается в том, что любая корпорация создается для осуществления какой либо социально полезной деятельности. Нужно признать, что ни прямого и четкого законодательного определения понятия «социально полезная деятельность», ни перечня видов деятельности, относимых к таковой, не существует. Вместе с тем в нормах российского законодательства определенные виды деятельности характеризуются как «представляющие опасность для личности, общества или госуда...
    Читать далее »

    Ответственность за нарушение корпоративных норм. Часть 13

    Действительно, согласно пункту 2 ст. 44 Арбитражного процессуального кодекса РФ (АПК РФ) истцами являются организации и граждане, предъявившие иск в защиту своих прав и законных интересов. Участники корпораций если и могут предъявить подобный иск, то только в интересах корпорации, поэтому истцом в любом случае должна выступать сама корпорация. Кроме того, возможности для предъявления подобного иска участниками корпораций значительно сужаются и потому, что для предъявления такого иска к членам совета директоров или коллегиального исполнительног...
    Читать далее »

    Понятие дисциплины труда. Дисциплинарная ответственность. Часть 2

    Что же касается дисциплинарной ответственности, подчеркнем, что ее приходится применять к работникам, виновно не исполняющим или недобросовестно исполняющим свои трудовые обязанности, т. е. за дисциплинарные проступки. Как справедливо указывает Т. В. Кашанина1, объем корпоративного правотворчества в данном случае гораздо ниже. В целом же за нарушение трудовых обязанностей в соответствии с положениями трудового законодательства администрация корпорации может наложить следующие Дисциплинарные взыскания (ст. 192 ТК РФ): замечание; выговор; у...
    Читать далее »

    Спор в корпоративном праве. Часть 6

    Для моделирования таких быстротекущих процессов, каким, в частности, является предпринимательская деятельность, государственное регулирование подходит не всегда. Законодатель может указывать только общие ориентиры, предоставляя участникам гражданского оборота возможность самим определять вид деятельности, условия ее осуществления, устанавливать цену в процессе реализации ее результатов и т. д. Государство должно регламентировать лишь некоторые стороны такой деятельности: налоги, экологические требования, нормы, касающиеся охраны труда, мин...
    Читать далее »